产品目录

版	本信息		2
参	考文档。		3
1.	产品简	育介	3
	1.1	应用场景	3
	1.2	型号选择	3
	1.3	物理参数	3
2.	产品,	力能	4
	2.1	产品参数	4
	2.2	功能框图	5
	2.3	产品功能	6
3.	配置	T具	7
	3.1	硬件连接	7
	3.2	配置界面	8
	3.3	基本信息配置	9
	3.4	网络参数配置	9
	3.5	MQTT 参数配置	10
	3.6	透传模式参数配置	10
	3.7	主动指令模式配置	11
	3.8	JSON 设备配置	12
	3.9	JSON 模板配置	12
4.	配置	羊解	13
	4.1	主动指令的周期和计时偏移设置	13
	4.2	主动指令的 JSON 格式上报数据	13
	4.3	服务器 JSON 指令转 Modbus RTU	14
联系	系方式。		17

版本信息

版本	时间	修改
1.0	2023年11月22日	初始版本: CC201、CC101 产品手册
1.1	2023年12月01日	修改附录 1:添加输入寄存器 0000,读取固件版本
1.2	2023年12月05日	附录 1:添加输入计数器、读模组 IMEI、序列号 SN;读物联网卡 IMSI、ICCID
1.3	2023年12月20日	小修改, 文本格式整理
1.4	2023年12月26日	新增参考文档一节。把 Modbus 寄存器改为单独文档
1.5	2024年03月16日	增加: 思可安配置工具的支持; 增加: 支持定制开发; 支持固件重新下载
1.6	2024年07月23日	增加:修改主动指令支持 Modbus JSON 格式数据上报
1.7	2025年03月20日	小修改
1.8	2025年03月21日	增加 CC101-B 模块
1.9	2025年06月13日	增加配置工具使用方法
2.0	2025年08月03日	4.2 节:增加主动指令出错时的 JSON 格式数据

参考文档

[参考文档 1]	《Modbus 寄存器-物联网模块》	<u>下载</u>
----------	--------------------	-----------

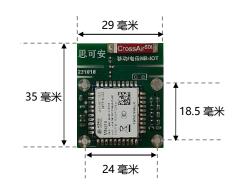
1. 产品简介

1.1 应用场景

- 小尺寸、板载天线、NB-IOT 嵌入式物联网应用
- 设备状态上报、传感器数据上报、设备远程控制

1.2 型号选择

■ CC201 模块: 串口 1: UART TTL, 3.3 伏特;


串口 2: RS485

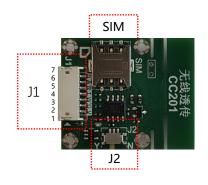
■ CC101-B 模块: 串口 1: UART TTL, 3.3 伏特;

1.3 物理参数

■ 封装与尺寸

▶ 板面尺寸: 35 x 29 (毫米)▶ 安装孔距: 24 x 18.5 (毫米)▶ 安装螺丝: M2 螺丝/螺母

■ 信号连接


> CC201 信号连接

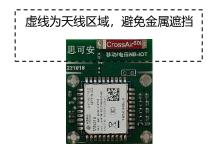
● SIM 卡座: Nano-SIM 物联网卡座; 支持移动、电信 NB-IOT 物联网卡

● J2 拨码开关: RS485 终端匹配电阻设置, Y 端: 120Ω; N 端: 无

● J1 接口信号线: 7PIN, 间距 1.5 毫米, 从下到上:

脚号	编号	意义
1	V	电压输入,3.3~7.5 伏
2	G	接地
3	-	预留
4	Т	串口 1: TXD 信号线
5	R	串口 1: RXD 信号线
6	Α	串口 2: RS485, A 接线端
7	В	串口 2: RS485, B 接线端

➤ CC101-B 信号连接



Nano SIM 卡座

J1 的脚号	编号	意义
1	V	电源输入, 2.2 ~ 4.2 伏特
2	G	接地
3	-	预留
4	Т	串口 1: TXD, 3.3 伏特
5	R	串口 1: RXD, 3.3 伏特
6	-	预留
7	-	预留

■ 板载天线


2. 产品功能

2.1 产品参数

· 호므페므	CC201: RS485 接口	
产品型号	CC101-B: UART TTL 串口	
工作中区	CC201: 3.3 伏 ~ 7.5 伏, 典型电压: 3.6 伏	
工作电压	CC101-B: 2.2 伏 ~ 4.2 伏, 典型电压: 3.6 伏	
工作温度	-25°~+75°	
	CC201: 串口 1: UART TTL, 3.3 伏, 用作模块配置;	
通信接口	串口 2: RS485, 过压/过流保护; 防浪涌; 带静电保护;	
	CC101-B: 串口 1: UART TTL, 3.3 伏;	
硬件连线	■ J1 接口: 7-PIN 底座,针距 1.5 毫米,参照 <u>信号连接</u> 一节	

	■ SIM 卡座:移动/电信 Nano 物联网卡		
	■ CC201: J2 开关: RS485 终端匹配电阻设置: Y 端: 120Ω; N 端: 无		
天线	内置天线,无需外接天线		
频段	B5/B8, 移动/电信 NB-IOT		
网络协议	UDP、TCP、MQTT		
Cat NB2 速率	■ 126.0kbps, 下行		
Cat NB2 医学	■ 158.5kbps, 上行		
	■ Modbus 寄存器: [参考文档 1]		
	■ 设备号:可配置;缺省为8位数字:93312190		
	■ 注册包、心跳包机制:可自定义		
软件功能	■ 数据传输:可实现外接设备和服务器双向透传		
	■ 主动指令模式:支持最多 6 路独立主动指令		
	■ Modbus JSON 格式上报		
	■ Modbus RTU/TCP 互转		
÷**	■ 1 个: CC201 模块,或者 CC101-B 模块		
交货标准	■ 1条: 7Pin 接口线,针间距 1.5 毫米		
注意事项	如果输入电压不稳定,需要外加过压、过流保护;防进水		
质保期	期 6 个月		
使用寿命	8年		
使用环境	NB-IOT 网络信号		
应用场景	小尺寸、NB-IOT 嵌入式物联网应用		
资料下载	http://www.cyckn.com/download		

2.2 功能框图

2.3 产品功能

■ 串口参数

- ▶ 串口的协议配置:
 - ✓ 工作模式:配置模式、透传模式、主动指令模式
 - ✓ 波特率: 2400 ~ 115200
 - ✓ 校验位:无、奇、偶
 - ✓ 停止位: 1位、1.5位、2位
- 串口的工作模式
 - ▶ 配置模式:
 - ✓ 串口 1 支持该模式
 - ✓ 设备为 Modbus RTU 从机,通过计算机串口发送配置指令
 - ✓ 对串口 1 和串口 2 进行工作模式及参数配置
 - ▶ 透传模式:
 - ✓ CC101-B 的串口 1、CC201 的串口 2 支持该模式
 - ✓ 设备和服务器之间的双向传输数据
 - ▶ 主动指令模式:
 - ✓ CC101-B 的串口 1、CC201 的串口 2 支持该模式
 - ✓ 最多可独立设置 6条指令,定时通过串口发送到外接串口设备
 - ✓ 打包从串口设备返回的数据,并传输到服务器
- 设备到服务器的数据格式
 - ▶ 透传模式:
 - ✓ 格式 1: 透明传输设备到服务器的数据, 缺省格式
 - ✓ 格式 2:接收设备 Modbus RTU 数据,转成 Modbus TCP 格式,并传输到服务器
 - ▶ 主动指令模式:
 - ✓ 格式 1: 透明传输设备到服务器的数据, 缺省格式
 - ✓ 格式 2: 对于主动指令的响应数据以 JSON 格式上报
 - ▶ 设备到服务器的数据头可选以下数据:
 - □ 时间戳: UTC 格式, 占 5 个字节, 例如 1698662520 表示时间为 2023-10-30 18:42:00
 - □ 设备号: 为 8 位 10 进制数, 如 93312190
 - □ 固件版本:为两个字节,例如 C203: C2 表示模块 CC201;03 为固件版本
- 服务器到设备的数据格式
 - ✓ 格式 1: 把从服务器接收到的数据,通过串口透明发送到外接串口设备
 - ✓ 格式 2: 把服务器返回数据从 Modbus TCP 转换成 Modbus RTU, 通过串口发送
 - ✓ 格式 3: 把服务器返回数据从 Modbus JSON 转换成 Modbus RTU,通过串口发送
- 设备网络传输协议(三选一):
 - ▶ TCP 协议(缺省)
 - ➤ UDP 协议

- ➤ MQTT 协议
- 注册包:开机时将设定的注册包发送到服务器
 - > 注册包的内容可以设置
- 心跳包

网络心跳包: 定时发送心跳包到网络服务器:

- ▶ 心跳包的上报周期可以设置, 缺省为 15 分钟
- ▶ 心跳包内容选择为自定义,最长为30字节
- ▶ 服务器响应数据的处理可配置:
 - ✓ 不做处理(缺省)
 - ✓ 透明发送到串口
 - ✓ Modbus TCP 转为 Modbus RTU, 并发送到串口
 - ✓ JSON 指令转为 Modbus RTU, 并发送到串口
- Modbus 寄存器及指令

本产品支持 Modbus 协议,参照文档 [参考文档 1]

■ 本产品支持定制开发,如果有需要的客户,请联系客服。

3. 配置工具

提供可视化的软件工具,可以在 http://www.cyckn.com/download 下载最新配置工具软件。

3.1 硬件连接

■ CC201 模块与配置工具的硬件连接

■ CC101-B 模块与配置工具的硬件连接

3.2 配置界面

■1 计算机串口的协议配置以及模块操作

▶ 选择串口参数:波特率、数据位数、停止位、校验位;缺省为 9600-8-1-N

打开/关闭串口:打开或关闭计算机串口

清除发送:删除发送区的数据

■ (2) 设备配置操作

读当前页数据:从设备读取当前配置页的数据写当前页数据:把当前配置页的数据写入设备

发现设备: 搜寻连接设备的型号

重启设备: 重启模块

恢复出厂设置

■(3) 手动发送数据到模块

輸入发送数据:可以从下拉框选择预设指令或手动输入数据指令,为16进制

> 定时发送功能:设置发送数据和发送周期,定时发送

▶ 发送:发送输入的数据

■ 4 模块信息显示

▶ 产品型号: CC201 或 CC101

固件版本

▶ 设备 IMEI

▶ 设备序列号 SN

▶ 物卡IMSI

▶ 物卡 ICCID

▶ 温度(℃): 仅适应 CC101-C▶ 湿度(RH%): 仅适应 CC101-C

- ▶ 信号强度(1-31),点击"刷新"按钮可读取最新数据
- 5 模块数据配置页面,根据不同的工作模式,显示对应配置的页面

基本信息:适合所有工作模式网络参数:适合所有工作模式

MQTT 参数: 当网络传输协议为 MQTT 时,该配置页面显示

- 6 数据交互区
 - ▶ 显示配置工具和模块的交互数据

3.3 基本信息配置

- ▶ 设备 ID: 8 位 10 进制数, 缺省为 93312190
- ▶ 本模块 Modbus 从机地址:从 1 到 247,为 10 进制数
- ▶ 串口协议参数设置

● 波特率:可选 2400, 4800, 9600, 19200, 38400, 57600, 115200

数据位: 8停止位: 1校验位: None

3.4 网络参数配置

- M络传输协议: TCP, UDP, MQTT; 选 MQTT 时, 在 MQTT 参数页面设置参数
- ▶ 服务器 IP 地址及端口号
- 网络注册包设置:每次上电开机时发送。注册包内容设置:

● 自定义:可以在网络注册内容中设置

● 设备 ID:在基本信息页面设置,缺省为93312190

- 网络心跳包周期:单位秒
- 网络心跳包响应处理:服务器收到心跳包后下发数据,模块的处理方式支持:
 - 不做处理:模块不做任何处理
 - 透明转发到串口:发送服务器下发数据到模块
 - Modbus TCP 转 RTU: 服务器下发 Modbus TCP 包,模块转成 Modbus RTU 数据,并 发送到模块
 - Modbus JSON 转 RTU: 服务器下发 Modbus JSON 数据,模块转成 Modbus RTU 数据,并发送到模块。JSON 数据的配置在"JSON 设备"和"JSON 模板"配置页面设置。 JSON 数据格式示例,请参考服务器 JSON 指令转 Modbus RTU。
- 网络心跳包内容: 16 进制数据,最多 30 个字节

3.5 MQTT 参数配置

- ▶ 客户端 ID
- ▶ 用户名
- ▶ 用户密码
- ▶ 发布主题
- > 订阅主题
- ▶ 保活时间 (单位秒)
- ▶ 清理会话

3.6 透传模式参数配置

- > 设备上报数据格式
 - 数据透传: 把模块串口输入的数据透明传输到服务器
 - Modbus RTU 转 TCP:串口 Modbus RTU 数据转为 Modbus TCP 格式,并上报服务器
- ▶ 服务器下发数据处理
 - 不做处理:模块不做任何处理
 - 透明转发到串口:发送服务器下发数据到"被配置的串口"外接的设备
 - Modbus TCP 转 RTU: 服务器下发 Modbus TCP 包,模块转成 Modbus RTU 数据,并 发送"被配置的串口"外接的设备
 - Modbus JSON 转 RTU: 服务器下发 Modbus JSON 数据,模块转成 Modbus RTU 数据,并发送"被配置的串口"。JSON 数据的配置在"JSON 设备"和"JSON 模板"配置页面设置。JSON 数据格式示例,请参考服务器 JSON 指令转 Modbus RTU。
- ▶ 设备上报数据头添加:
 - 时间戳: 10 位 10 进制数字的 UTC 时间戳信息
 - 设备号: 8为10进制数的设备号,在"基本信息"页面配置
 - 固件版本: 2字节固件版本

3.7 主动指令模式配置

- ▶ 指令序号: 最多可设定 6 条主动指令,分别定时发送到外接设备
- ▶ 主动指令内容: 16 进制
- ▶ 自动生成:对于 Modbus 指令,可通过选择不同参数,自动生成主动指令
 - 设备地址: 16 进制,为 Modbus 地址,从 1 到 247。如果"上报数据格式"或"下发数据处理"为 JSON 数据,设备地址必须在"JSON 设备"和"JSON 模板"设置对应的 JSON 模板。
 - 功能码: 01-读取线圈输出; 02-读取状态输入; 03-读保持寄存器; 04-读输入寄存器
 - 寄存器地址: 16 进制, 该 Modbus 指令的操作起始地址
 - 寄存器数: 10 进制,该 Modbus 指令读取的寄存器数量
- 上报数据格式
 - 数据透传:透传外接设备返回数据到服务器
 - JSON 格式 1:参照上报数据 JSON 数据格式
 - JSON 格式 2:参照上报数据 JSON 数据格式
- 上报数据包含:可选择
 - 时间戳: 10 位 10 进制数字的 UTC 时间戳信息
 - 设备号: 8 为 10 进制数的设备号, 在"基本信息"页面配置
 - 固件版本: 2字节固件版本

▶ 下发数据处理:

- 不做处理:模块不做任何处理
- 透明转发到串口:发送服务器下发数据到"被配置的串口"
- Modbus TCP 转 RTU: 服务器下发 Modbus TCP 包,模块转成 Modbus RTU 数据,并 发送"被配置的串口"
- Modbus JSON 转 RTU: 服务器下发 Modbus JSON 数据,模块转成 Modbus RTU 数据,并发送"被配置的串口"。JSON 数据的配置在"JSON 设备"和"JSON 模板"配置页面设置。JSON 数据格式示例,参考服务器 JSON 指令转 Modbus RTU。
- > 发送周期:单位秒,每个指令可独立设置,参照主动指令的周期和计时偏移设置
- 计时延时:单位秒,延时时间后开始计时第一个发送周期

3.8 JSON 设备配置

- 》 设备序号: 最多可配置 8 个外接 Modbus 设备
- ▶ 设备地址: 16 进制,取值1到247
- ▶ 选择上报数据 JSON 模板:可选对应的 JSON 模板,在 "JSON 模板设置"页面配置

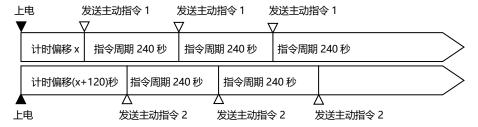
3.9 JSON 模板配置

- 键值输入:最长16个字符
- 》 寄存器地址:对应的寄存器地址
- ▶ 数据顺序: ABCD 为字节顺序, A、B、C、D表示 4 bits16 进制数, 其表示的数值为:
 - ABCD: A 左移 24 位 + B 左移 16 位 + C 左移 8 位 + D 左移 0 位
 - BADC: A 左移 16 位 + B 左移 24 位 + C 左移 0 位 + D 左移 8 位
 - CDAB: A 左移 8 位 + B 左移 0 位 + C 左移 24 位 + D 左移 16 位

- DCBA: A 左移 0 位 + B 左移 8 位 + C 左移 16 位 + D 左移 24 位
- ▶ 数据类型:
 - = 0: int16, 2字节;
 - = 1: uint16, 2字节;
 - = 2: int32, 4字节;
 - = 3: uint32, 4字节;
 - = 4: bool, 2字节;
 - = 5: float16, 2字节;
 - = 6: float32, 4字节;
- ▶ 小数点数: 当数据为 float16, float32 时,数据的小数点位数,从 0~3
- ▶ 结果比例 A 和结果偏移 B: Y=A*X+B,如果结果比例为 a,结果偏移为 b,设备返回结果为 X,则最终结果为 Y = a·X + b。
- ➤ 举例如下:数据为 float16,小数点 2 位,设备返回的寄存器数据为 0x1234,则 X = (0x1234/100) = 46.60;如果 a=1.5, b=2.86,最终结果 Y = 1.5·46.60 + 2.86 = 72.76
- ▶ 上报下限(TL)和上报上限(TH):假设阈值上限为 ThresH,阈值下限为 ThresL,如果最终结果满足 Y <= ThresL 或 Y > ThresH,则上报;否则不上报。

4. 配置详解

4.1 主动指令的周期和计时偏移设置


最多可设置6条主动指令,每条指令的指令周期和指令周期初始计时偏移都可单独设置。

■ **指令周期以及指令周期初始计时偏移**,单位秒

■ 举例: 2 个主动指令等时轮询发送,间隔为 120 秒:

指令 1 周期为 240 秒, 计时偏移为 x; 指令 2 周期为 240 秒, 计时偏移为(x+120):

4.2 主动指令的 JSON 格式上报数据

主动指令的上报数据格式设为 "JSON 格式 1" 或 "JSON 格式 2" 时的 JSON 数据格式:

■ JSON 格式 1 示例:

{"devid": 9331290, "fm": "C1.2", "time": 1638865162, "a": 23.5, "b": 46.8}

- 》 "devid": 设备号, 为数字, 不加引号。在"主动指令模式"页面配置
- 》 "fm":固件版本号,可选,在"主动指令模式"页面配置
- > "time": 4字节时间戳, 可选, 在 "主动指令模式"页面配置
- › "a", "b":对应的外接设备返回数据,为数字,在"JSON模板"中设置

■ JSON 格式 2 示例:

{"devid": 9331290, "fm": "C1.2", "time": 1638865162, "data": {"a": 23.5, "b": 46.8}}

- > "devid": 设备号, 为数字, 不加引号, 在"主动指令模式"页面配置
- ▶ "fm":固件版本号,可选,在"主动指令模式"页面配置
- 》 "time": 5字节时间戳, 可选, 在"主动指令模式"页面配置
- ▶ "data":{ "a", "b"}: 对应的外接设备返回数据, 在 "JSON 模板"中设置

■ 主动指令出错时的 JSON 格式数据示例:

{"devid": 9331290, "fm": "C1.2", "time": 1638865162, "err": xxx}

- > "devid": 设备号,为数字,不加引号,在"主动指令模式"页面配置
- > "fm":固件版本号,可选,在"主动指令模式"页面配置
- ▶ "time": 5 字节时间戳,可选,在"主动指令模式"页面配置
- > "err": xxx 为 3 位数字的错误码

err 代码	意义
401	数据格式错误
403	数据类型或设备地址设置错误
405	数据长度错误
409	功能码错误
411	没有配置对应键值
412	外接设备超时错误
其它值	未知错误

4.3 服务器 JSON 指令转 Modbus RTU

■ 服务器 JSON 指令格式

"type":必需项

寄存器类型

- = "coil": 对应功能码 01(读取线圈状态)、05(写单个线圈状态)、15(写多个线圈状态)
- = "di": 对应功能码 02(读取离散输入状态)
- = "hold": 对应功能码 03(读取保持寄存器)、06(写单个保持寄存器)、16(写多个保持寄存器)
- = "input": 对应功能码 04(读取输入寄存器)

➤ "devid": 必需项

设备 ID 号, 8 位数字,不加引号。跟设备中设置的设备号一致,必须项

> "data": 必需项

寄存器对应的键值,以及设置值。键值跟模块中的设置保持一致。如果设置值为"?",表示读取;否则为写入。譬如 "a":"?"表示读取"a"对应的寄存器值; "a":1表示把1(即打开开关)值写入寄存器。

■ 设备响应 JSON 数据

- > JSON 指令错误: {"devid":93312190,"type":"coil", "error":1}
 - "devid":设备 ID 号, 8 位数字,不加引号。跟 JSON 指令中的设备号一致
 - "type": 寄存器类型,跟 JSON 指令中的寄存器类型一致
 - "error":错误代码, 0x01=JSON 指令数据格式错误

0x02=JSON 指令中的设备号错误

0x03=JSON 指令中的寄存器类型错误

0x04=JSON 指令中的数据错误

- 执行成功: {"devid":93312190,"type":"coil", "data":{"a":"ok"}}
- 执行失败: {"devid":93312190,"type":"coil", "data":{"a":"nok"}}

■ 服务器 JSON 指令示例

```
示例 1: 把线圈"a"对应的线圈写入 1, 即打开开关
服务器下发 JSON 指令:{
    "type": "coil",
```

```
"type": "coil",
"devid": 9331290,
"data": {
```

"a": "OK" // OK: 成功; NOK: 写入失败 }

> 示例 2: 读取线圈"a"对应的状态

```
服务器下发 JSON 指令:
{
    "type": "coil",
    "devid": 9331290,
    "data": {
         "a": "?"
        }
```

}

}

```
模块响应数据:
{
   "type": "coil",
   "devid": "9331290",
   "data": {
            "a": 1
          }
}
    示例 3: 读输入寄存器"temp"对应的温度值, "humi"对应的湿度值
服务器下发 JSON 指令:
{
   "type": "input",
   "devid": 9331290,
   "data": {
            "temp": "?",
            "humi": "?"
          }
}
模块响应数据:
{
   "type": "input",
   "devid": 9331290,
   "data": {
            "temp": 23.5,
            "humi": 53.8
          }
}
```

联系方式

客服电话: 13651106881 (同微信号)

淘宝店销售: 思可安

微信公众号: 思可安

公司网站: www.cyckn.com

产品资料: www.cyckn.com/download